

ELASTOMERS

As an Engineering Material Presented by D.L. Hertz, Jr. at PMA - 1988 Spring Meeting April 26, 1988 - San Diego, CA

POLYURETHANES - What Are They?

<u>Block Polymers</u> - consisting of;

- a. Flexible chains (polyesters, polyethers) m.w. 1500-3000
- b. Rigid segments (aromatic diisocyanates) m.w. 1000-3500

coupled with

c. Short-chain aromatic or aliphatic diamines chain extenders

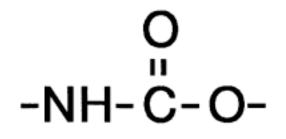
The polyurethane elastomer has a typical molecular weight estimated to be between 35,000-50,000 for thermoplastics and in excess of 50,000 for millable gums

CLASSES OF POLYURETHANES

1. Millable Gums -

contain unsaturated sites allowing use of conventional crosslinkers

2. Thermoplastic Gums -


molded by conventional plastic molding and extrusion equipment

3. Castable Liquids-

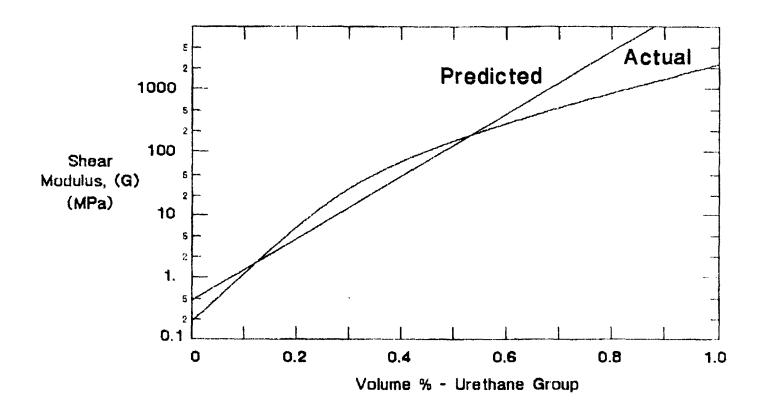
mixed in a liquid state with co-reactants to chain extend and crosslink

COMMON CHARACTERISTICS:

Urethane Linkage

The urethane group has a very high energy of cohesion value - 41.9 kj mol⁻¹

ENERGY OF COHESION - Various Groups*


Group	Energy of Cohesion (kj mol ⁻¹)		
- C H ₂ -	5.15		
-0-	10.0		
0 	17.4		
0 - C - O - (este 	r) 18.0		
- C - N H- O	27.6		
-NH-C-O-	41.9		

* Barton - "Handbook of Solubility Parameters"

WEAKNESSES OF POLYURETHANES

Segment	Sensitivity
Polyester	Hydrolysis or solvolysis
Polyether	Oxidation or photodegradation
Urethane	Solvolysis in strongly polar fluids
	segmental melting:

77-193 ° C (aliphatic polyurethanes) 180-388 °C (aromatic polyurethanes)

POLYURETHANE DAMPING RANGE* $(\tan \delta \ge 0.5, 10-1000 \text{ Hz})$

	Temperature (°C)		Range
Polymer	from	to	° C
Natural Rubber	-45	-23	22
Polyisobutylene	-47	18	65
Polyurethane No. 1	-34	2	36
Polyurethane No. 2	17	50	33
Polyurethane No. 3	27	69	42
Polyurethane No. 4	34	66	32
Polyurethane No. 5	-35	30	65
Polyurethane No. 6	9	45	36

* "Theory and Practice of Engineering with Rubber" Freakley & Payne (1978)

POLYURETHANE FREQUENCY RESPONSE

tan $\delta\,$ vs. Frequency (log Hz) **tan** δ 2.0 1 1.6 4 2 5 1.2 3 6 0.8 0.4 -2 0 4 6 8 -4 2 log Hz at 25° C

(R. Pariser - Dupont, 1963)